Module Make.C
module Ctx = Ctx
type t
type clause
= t
Flags
type flag
= SClause.flag
Basics
val compare : t -> t -> int
val id : t -> int
val lits : t -> Logtk.Literal.t array
val is_ground : t -> bool
val weight : t -> int
val ho_weight : t -> int
val is_goal : t -> bool
Looking at the clause's proof, return
true
iff the clause is an initial (negated) goal from the problem
val distance_to_goal : t -> int option
See
Proof
.distance_to_goal, applied to the clause's proof
val comes_from_goal : t -> bool
true
iff the clause is (indirectly) deduced from a goal or lemma
Boolean Abstraction
val has_trail : t -> bool
Has a non-empty trail?
val update_trail : (Trail.t -> Trail.t) -> t -> t
Change the trail. The resulting clause has same parents, proof and literals as the input one
val trail_subsumes : t -> t -> bool
trail_subsumes c1 c2 = Trail.subsumes (get_trail c1) (get_trail c2)
val is_active : t -> v:Trail.valuation -> bool
True if the clause's trail is active in this valuation
val is_inj_axiom : t -> (Logtk.ID.t * int) option
Returns Some (sym,i) if clause is injectivity axiom for ith argument of symbol sym.
Constructors
val create : penalty:int -> trail:Trail.t -> Logtk.Literal.t list -> Clause_intf.proof_step -> t
Build a new clause from the given literals.
- parameter trail
boolean trail
- parameter penalty
heuristic penalty due to history of the clause (the higher, the less likely the clause is to be picked soon) also takes a list of literals and a proof builder
val create_a : penalty:int -> trail:Trail.t -> Logtk.Literal.t array -> Clause_intf.proof_step -> t
Build a new clause from the given literals.
val of_sclause : ?penalty:int -> SClause.t -> Clause_intf.proof_step -> t
val of_forms : ?penalty:int -> trail:Trail.t -> Logtk.Term.t Logtk.SLiteral.t list -> Clause_intf.proof_step -> t
Directly from list of formulas
val of_forms_axiom : ?penalty:int -> file:string -> name:string -> Logtk.Term.t Logtk.SLiteral.t list -> t
Construction from formulas as axiom (initial clause)
val of_statement : ?convert_defs:bool -> Logtk.Statement.clause_t -> t list
Extract a clause from a statement, if any
val proof_step : t -> Clause_intf.proof_step
Extract its proof from the clause
val proof : t -> Clause_intf.proof
Obtain the pair
conclusion, step
val proof_parent : t -> Logtk.Proof.Parent.t
val proof_parent_subst : Logtk.Subst.Renaming.t -> t Logtk.Scoped.t -> Logtk.Subst.t -> Logtk.Proof.Parent.t
val update_proof : t -> (Clause_intf.proof_step -> Clause_intf.proof_step) -> t
update_proof c f
creates a new clause that is similar toc
in all aspects, but with the prooff (proof_step c)
val length : t -> int
Number of literals
val maxlits : t Logtk.Scoped.t -> Logtk.Subst.t -> CCBV.t
List of maximal literals
val is_maxlit : t Logtk.Scoped.t -> Logtk.Subst.t -> idx:int -> bool
Is the i-th literal maximal in subst(clause)? Equivalent to Bitvector.get (maxlits ~ord c subst) i
val eligible_res : t Logtk.Scoped.t -> Logtk.Subst.t -> CCBV.t
Bitvector that indicates which of the literals of
subst(clause)
are eligible for resolution. THe literal has to be either maximal among selected literals of the same sign, if some literal is selected, or maximal if none is selected.
val eligible_res_no_subst : t -> CCBV.t
More efficient version of
eligible_res
withSubst.empty
val eligible_param : t Logtk.Scoped.t -> Logtk.Subst.t -> CCBV.t
Bitvector that indicates which of the literals of
subst(clause)
are eligible for paramodulation. That means the literal is positive, no literal is selecteed, and the literal is maximal among literals ofsubst(clause)
.
val is_eligible_param : t Logtk.Scoped.t -> Logtk.Subst.t -> idx:int -> bool
Check whether the
idx
-th literal is eligible for paramodulation
val has_selected_lits : t -> bool
does the clause have some selected literals?
val is_selected : t -> int -> bool
check whether a literal is selected
val selected_lits : t -> (Logtk.Literal.t * int) list
get the list of selected literals
val penalty : t -> int
val inc_penalty : t -> int -> unit
val is_unit_clause : t -> bool
is the clause a unit clause?
val is_oriented_rule : t -> bool
Is the clause a positive oriented clause?
val symbols : ?init:Logtk.ID.Set.t -> ?include_types:bool -> t Iter.t -> Logtk.ID.Set.t
symbols that occur in the clause
val to_sclause : t -> SClause.t
val to_forms : t -> Logtk.Term.t Logtk.SLiteral.t list
Easy iteration on an abstract view of literals
Iterators
module Seq : sig ... end
val apply_subst : ?renaming:Logtk.Subst.Renaming.t -> ?proof:Logtk.Proof.Step.t option -> ?penalty_inc:int option -> t Logtk.Scoped.t -> Logtk.Subst.FO.t -> t
Filter literals
module Eligible : sig ... end
Set of clauses
Position
module Pos : sig ... end
Clauses with more data
module WithPos : sig ... end
Clause within which a subterm (and its position) are highlighted
IO
val pp : t CCFormat.printer
val pp_tstp : t CCFormat.printer
val pp_tstp_full : t CCFormat.printer
Print in a cnf() statement
val to_string : t -> string
Debug printing to a string