Module Logtk.Statement
Statement
type 'ty data
=
{
data_id : ID.t;
Name of the type
data_args : 'ty Var.t list;
type parameters
data_ty : 'ty;
type of Id, that is,
type -> type -> ... -> type
data_cstors : (ID.t * 'ty * ('ty * (ID.t * 'ty)) list) list;
Each constructor is
id, ty, args
.ty
must be of the formty1 -> ty2 -> ... -> id args
.args
has the form(ty1, p1), (ty2,p2), …
where eachp
is a projector.}
A datatype declaration
type attr
=
|
A_AC
|
A_infix of string
|
A_prefix of string
|
A_sos
set of support
type attrs
= attr list
type 'ty skolem
= ID.t * 'ty
type polarity
=[
|
`Equiv
|
`Imply
]
polarity for rewrite rules
type ('f, 't, 'ty) def_rule
=
|
Def_term of
{
vars : 'ty Var.t list;
id : ID.t;
ty : 'ty;
args : 't list;
rhs : 't;
as_form : 'f;
}
forall vars, id args = rhs
|
Def_form of
{
vars : 'ty Var.t list;
lhs : 't SLiteral.t;
rhs : 'f list;
polarity : polarity;
as_form : 'f list;
}
forall vars, lhs op bigand rhs
whereop
depends onpolarity
(in{=>, <=>, <=}
)type ('f, 't, 'ty) def
=
{
def_id : ID.t;
def_ty : 'ty;
def_rules : ('f, 't, 'ty) def_rule list;
def_rewrite : bool;
}
type ('f, 't, 'ty) view
=
|
TyDecl of ID.t * 'ty
id: ty
|
Data of 'ty data list
|
Def of ('f, 't, 'ty) def list
|
Rewrite of ('f, 't, 'ty) def_rule
|
Assert of 'f
assert form
|
Lemma of 'f list
lemma to prove and use, using Avatar cut
|
Goal of 'f
goal to prove
|
NegatedGoal of 'ty skolem list * 'f list
goal after negation, with skolems
type lit
= Term.t SLiteral.t
type formula
= TypedSTerm.t
type input_def
= (TypedSTerm.t, TypedSTerm.t, TypedSTerm.t) def
type clause
= lit list
type ('f, 't, 'ty) t
= private
{
id : int;
view : ('f, 't, 'ty) view;
attrs : attrs;
proof : proof;
mutable name : string option;
}
and proof
= Proof.Step.t
and input_t
= (TypedSTerm.t, TypedSTerm.t, TypedSTerm.t) t
and clause_t
= (clause, Term.t, Type.t) t
val compare : (_, _, _) t -> (_, _, _) t -> int
val view : ('f, 't, 'ty) t -> ('f, 't, 'ty) view
val attrs : (_, _, _) t -> attrs
val proof_step : (_, _, _) t -> proof
val name : (_, _, _) t -> string
Retrieve a name from the proof, or generate+save a new one
val as_proof_i : input_t -> Proof.t
val res_tc_i : input_t Proof.result_tc
val as_proof_c : clause_t -> Proof.t
val res_tc_c : clause_t Proof.result_tc
val mk_data : ID.t -> args:'ty Var.t list -> 'ty -> (ID.t * 'ty * ('ty * (ID.t * 'ty)) list) list -> 'ty data
val mk_def : ?rewrite:bool -> ID.t -> 'ty -> ('f, 't, 'ty) def_rule list -> ('f, 't, 'ty) def
val attrs_ua : (_, _, _) t -> UntypedAST.attrs
All attributes, included these in the proof
val ty_decl : ?attrs:attrs -> proof:proof -> ID.t -> 'ty -> (_, _, 'ty) t
val def : ?attrs:attrs -> proof:proof -> ('f, 't, 'ty) def list -> ('f, 't, 'ty) t
val rewrite : ?attrs:attrs -> proof:proof -> ('f, 't, 'ty) def_rule -> ('f, 't, 'ty) t
val data : ?attrs:attrs -> proof:proof -> 'ty data list -> (_, _, 'ty) t
val assert_ : ?attrs:attrs -> proof:proof -> 'f -> ('f, _, _) t
val lemma : ?attrs:attrs -> proof:proof -> 'f list -> ('f, _, _) t
val goal : ?attrs:attrs -> proof:proof -> 'f -> ('f, _, _) t
val neg_goal : ?attrs:attrs -> proof:proof -> skolems:'ty skolem list -> 'f list -> ('f, _, 'ty) t
val signature : ?init:Signature.t -> ?conj_syms:ID.t Iter.t -> (_, _, Type.t) t Iter.t -> Signature.t
Compute signature when the types are using
Type
val conv_attrs : UntypedAST.attrs -> attrs
val attr_to_ua : attr -> UntypedAST.attr
val map_data : ty:('ty1 -> 'ty2) -> 'ty1 data -> 'ty2 data
val map_def : form:('f1 -> 'f2) -> term:('t1 -> 't2) -> ty:('ty1 -> 'ty2) -> ('f1, 't1, 'ty1) def -> ('f2, 't2, 'ty2) def
val map_def_rule : form:('a -> 'b) -> term:('c -> 'd) -> ty:('e -> 'f) -> ('a, 'c, 'e) def_rule -> ('b, 'd, 'f) def_rule
val map : form:('f1 -> 'f2) -> term:('t1 -> 't2) -> ty:('ty1 -> 'ty2) -> ('f1, 't1, 'ty1) t -> ('f2, 't2, 'ty2) t
Defined Constants
type definition
= Rewrite.rule_set
val as_defined_cst : ID.t -> (int * definition) option
as_defined_cst id
returnsSome level
ifid
is a constant defined at stratification levellevel
,None
otherwise
val as_defined_cst_level : ID.t -> int option
val is_defined_cst : ID.t -> bool
val declare_defined_cst : ID.t -> level:int -> definition -> unit
declare_defined_cst id ~level
states thatid
is a defined constant of givenlevel
. It means that it is defined based only on constants of strictly lower levels
val scan_stmt_for_defined_cst : clause_t -> unit
Try and declare defined constants in the given statement
val scan_tst_rewrite : input_t -> unit
Inductive Types
val scan_stmt_for_ind_ty : clause_t -> unit
scan_stmt_for_ind_ty stmt
examinesstmt
, and, if the statement is a declaration of inductive types or constants, it declares them usingdeclare_ty
ordeclare_inductive_constant
.
val scan_simple_stmt_for_ind_ty : input_t -> unit
Same as
scan_stmt
but on earlier statements
val get_rw_rule : ?weight_incr:int -> clause_t -> (Logtk.ID.Set.elt * Rewrite.rule) option
val get_formulas_from_defs : ('a, _, _) t -> 'a CCList.t
val sine_axiom_selector : ?ignore_k_most_common_symbols:int option -> ?take_conj_defs:bool -> ?take_only_defs:bool -> ?trim_implications:bool -> ?depth_start:int -> ?depth_end:int -> ?tolerance:float -> input_t Iter.t -> input_t Iter.t
Implementation of SinE algorithm with the usual parameters described in Hoder and Voronkov Sine Qua Non paper
Iterators
module Seq : sig ... end
IO
val pp_def_rule : 'a CCFormat.printer -> 'b CCFormat.printer -> 'c CCFormat.printer -> ('a, 'b, 'c) def_rule CCFormat.printer
val pp_def : 'a CCFormat.printer -> 'b CCFormat.printer -> 'c CCFormat.printer -> ('a, 'b, 'c) def CCFormat.printer
val pp : 'a CCFormat.printer -> 'b CCFormat.printer -> 'c CCFormat.printer -> ('a, 'b, 'c) t CCFormat.printer
val to_string : 'a CCFormat.printer -> 'b CCFormat.printer -> 'c CCFormat.printer -> ('a, 'b, 'c) t -> string
val pp_clause : clause_t CCFormat.printer
val pp_input : input_t CCFormat.printer
module ZF : sig ... end
module TPTP : sig ... end
val pp_clause_in : Output_format.t -> clause_t CCFormat.printer
val pp_input_in : Output_format.t -> input_t CCFormat.printer