Module Libzipperposition.Ind_cst
Inductive Constants and Cases
Skolem constants of an inductive type, coversets, etc. required for inductive reasoning.
type t
A ground term of an inductive type. It must correspond to a term built with the corresponding
t
only. For instance, a constant of typenat
should be equal tos^n(0)
in any model.
exception
InvalidDecl of string
exception
NotAnInductiveConstant of Logtk.ID.t
val id_as_cst : Logtk.ID.t -> t option
val id_as_cst_exn : Logtk.ID.t -> t
Unsafe version of
as_cst
- raises NotAnInductiveConstant
if it fails
val id_is_cst : Logtk.ID.t -> bool
Check whether the given constant is an inductive constant
val on_new_cst : t Logtk.Signal.t
Triggered with new inductive constants
val make_skolem : Logtk.Type.t -> Logtk.ID.t
val make : ?depth:int -> is_sub:bool -> Logtk.Type.t -> t
Make a new constant of the given type
val is_sub : t -> bool
Is the constant a sub-constant (i.e. a subterm of a case in a coverset)?
val id_is_sub : Logtk.ID.t -> bool
val equal : t -> t -> bool
val compare : t -> t -> int
val hash : t -> int
val id : t -> Logtk.ID.t
val to_term : t -> Logtk.Term.t
val ty : t -> Logtk.Type.t
val same_type : t -> t -> bool
Do these two inductive constants have the same type?
val pp : t CCFormat.printer
val depth : t -> int
val dominates : t -> t -> bool
dominates c1 c2
ifdepth c1 < depth c2
. This way, in coversets, the top constant dominates all sub-constants
Inductive Skolems
type ind_skolem
= Logtk.ID.t * Logtk.Type.t
val ind_skolem_compare : ind_skolem -> ind_skolem -> int
val ind_skolem_equal : ind_skolem -> ind_skolem -> bool
val id_is_ind_skolem : Logtk.ID.t -> Logtk.Type.t -> bool
id_is_potential_cst id ty
returnstrue
ifid:ty
is a skolem constant of an inductive type, or if it is already an inductive constant.
val find_ind_skolems : Logtk.Term.t -> ind_skolem Sequence.t
find_ind_skolem term
searches subterms ofterm
for constants that are of an inductive type and that are skolems or (already) inductive constants.
val ind_skolem_depth : Logtk.ID.t -> int
depth of the skolem (0 if not an inductive constant)